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Homework 3.1 (Construction in the proof of Mittag-Leffler’s theorem*). Construct explicitly
(in the sense of an explicit series) a holomorphic function f: C\ {yn : n € N} — C such
that for every n € N, the function f has the principal part

N
2= n

qn(z) =

at z, == yn'.

Homework 3.2 (Partial fraction decomposition of 72/sin?(z)). The goal of this exercise
is to prove the formula

2 _ 1
(z—-n)?

sin®(72) =

This will be achieved in several steps. Keep in mind the formula
1 .. .
: _ _— [alz _ a-iz
sin(z) % [e e ] .

a. Show the assignment f(z) := n%/sin?(nz) has its singularities exactly in Z and
determine the principle parts of the Laurent series expansion in those points.

b. Show the series
1
8(2) = 5
r;Z (z—n)

converges locally uniformly on C \ Z, so that it is meromorphic. Conclude the
difference g(z) — f(z) can be extended to an entire function.

c. Show f(z) converges to zero as |Jz| — oo uniformly in Rz.

d. Show the same statement for the function g. Then prove that the difference g — f is
bounded on C and conclude the proof”.

Solution. a. The function f has singularities exactly in all zeros of the assignment sin(7z).
Note that sin(7rz) = 0 for every z € Z.
We now argue that these are the only zeros. Write z = x + 1y, where x, y € R. Then

. 1,.. .

sin(z) = —,[e'xe Y—e ”‘ey],
2i

so that sin(z) = 0 implies e?* = e?’. The left hand side has modulus one, which yields

e?Y = 1. By injectivity of the real-valued exponential function, we infer y = 0. In turn, from

the previous identities of exponential functions, we obtain x € nZ.
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IHint. Prove that a second order Taylor polynomial p,, of g, yields the local normal convergence of the sum
f =2nenlgn — pnl, cf. Theorem 2.2.

“Hint. Note that (g-f)(z+1)=(g - f)(z) forevery z € C.
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In order to determine the principal part in a singularity z* € Z we first treat the case

z" = 0. Since the assignment sin(z)/z has a removable singularity in z* = 0, it follows that
f has a pole of second order in z* = 0. Hence its Laurent series takes the form

0
f(z) = a7 % +a_1z7 '+ Zanz".
n=0

Since the corresponding integrals for the coefficients are quite difficult to evaluate, we use
this structure to determine the coefficients a_; and a_,. Note that

a- QthZ f(z) = lim ( o

————=1
z—0 sin“(7rz)

Next, for the coefficient a_; we use sin(z)/z — 1 as z — 0 to calculate

_ d 2
a-1= 4 0Z.f(Z)

272z sin?(nz) — 2(nz)? sin(nz) cos(nz)
m

z—0 sin*(7z)
i 21 — 2m cos(mz)

70 sin(rz)
=0;

here, we have used cos(z) = 1 — z2 + O(z*) as z — 0. Hence the principal part at z* = 0
reads g(z) == 1/2%.

To treat the other singularities we note that f(z+ 1) = f(z) forall z € C\ Z. Indeed,
write again z = x +1y, where x, y € R. Then

1
sin(nz +7) = > [ im(x+l) o=y _ g=izm(x+l) ey] = —sin(nz),
1

so that taking the inverse square yields the claim. By this periodicity property it follows
that the coefficients of the Laurent series are also periodic. Hence at a general z,, € Z the
principal part is given by ¢, (z) := 1/(z — za)*.

b. Let K ¢ C\ Z be compact. Then there exists a constant ¢(K) with sup_ g [z] < ¢(K).
In particular, for every n € N with |n| > 2¢(K) and every z € K, the triangle inequality
implies |z — n| > |n| — ¢(K) > |n|/2, which gives

sup
|n|>2L(K) zek

e Y Aew
(z=m)? ||ﬂam
Hence the series g converges locally normally on C \ Z. By Lemma 1.11 it follows that g is
holomorphic on C \ Z. Since all singularities are isolated and poles of second order, we
deduce that g is meromorphic on C. As its principal parts agree with the ones of f in all
singularities, it follows from Remark 2.3 that the difference g — f can be extended to an
entire function.

c. We show the function |sin(x + iy)| blows up when |y| — +co uniformly in x € R.
Indeed, by the triangle inequality we have

sin(x +1y)| = ‘%[eix ey e ix ey” > %[elyl _ e-l)’|]‘

The right hand side goes to o as |y| — oo uniformly in x € R. This proves the claim.

d. Fix n € Z and write z = x + iy, where x, y € R. By the periodicity g(z + 1) = g(2)
for all z € C \ Z (which follows by an index shift) it suffices to take x € [0, 1]. Using the
equivalence of the £'-norm and the usual euclidean (viz. £2-)norm on R? we deduce there
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exists a constant ¢ > 0 such that

1
1 —[lyl+Inl-1] ifn>1,
lz=nl= =(yl+lx—nl) =2 {§
¢ —[Iyl + Inl] ifn <0.
C

Hence, performing further index shifts, we infer that

1 1 1
|gi (Z—n)2| <<, (Iy[+In] = 1)? e, (Iy[+1nl)?

n>1 n<0

Clearly the last term vanishes as |y| — +oo.

It remains to show the difference g — f is bounded on C. We already know that it is
holomorphic and periodic in the sense that (g — f)(z+ 1) = (g — f)(z) for every z € C.
Hence on each strip of the form R X [—a, a], where a > 0, it is bounded. From c. and
the previous discussion we further know that there exists some a* > 0 such that for all
z=x+iy withx € Rand y € R with |y| > a* it holds that [(g — f)(z)| < 1. Hence g — f
is a bounded, entire function. By Liouville’s theorem it is therefore constant and again by c.
and the previous discussion it follows [ = g.

Homework 3.3 (Weierstral} elliptic function). Let w, w; € C be R-linearly independent.
Show that up to an additive constant there exists one and only one holomorphic function®
9: C\ {mw; +nw;y : m,n € Z} — C such that

a. g has principal part ¢ (z) := 1/z% ind; := 0 and

b. ¢ is {w,w;}-periodic, i.e. for every z € C\ {mw, + nw, : m,n € Z},

p(z+w1) = p(2),
P(z+w2) = p(2).

You can use without proof that

1
Z w2 rmyin =

n,meZ
|n|+|m|£0
Solution. We first show the uniqueness statement. Suppose that there are two functions
91 and g, with the stated properties. Then the difference g := ¢ — ¢, has a removable
singularity in O and by periodicity also in each point z,, ,,, = mw; + nw,, where n,m € Z.
We conclude that g can be extended to an entire function. Since the set {w;, w,} forms a
basis of C with respect to field R, the local boundedness of (the extended version of) g and
the periodcity imply that g is bounded on C. Hence g is constant by Liouville’s theorem.
This shows the uniqueness claim.

Next we construct the function . The basic idea is to use the structure given by the
Mittag-Leftler theorem, that means we consider the countable set S := {z, » = mw; + nwy :
m,n € Z} and the corresponding principal parts g, () := 1/(z = Zu.m)>. The difficult part
is how to choose the polynomials in order to ensure periodicity. Non-constant polynomials
are never periodic. Hence we try to construct constant ones. The zeroth-order expansion of

31f we require that the zeroth order coefficient of the Laurent series in the origin vanishes, this function is called
the Weierstrall ¢-function.
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{n,m in zero is given by g, (0) = 1/z2 ,, whenever n® + m* # 0. Thus our ansatz is

1 1 1
p(Z):z_2+ Z [(z—zn,m)2 22

n,m

We show this series converges locally normally on C \ {z, m : m,n € Z}. Then it
satisfies all claimed properties — the periodicity from b. following by an index shift. Let
K c C\ {zy,m : m,n € Z} be compact. For all z € K, algebraic manipulations give

1 _ 1 |Z2 - ZZn,mZI
(z— Zn,m)2 Z%’m - |Zn,m|2 |z - Zn,ml2 '
Since K is bounded, the quantity Cx := sup_ g |z| is finite. Next note that the R-linear
mapping Q defined through Q(1) := w; and Q(i) := w; can be interpreted as an invertible,
R-linear map from C to C. Thus there exists a constant ¢(w1, wy) such that
|Znm| = |Q(n +mi)| > c(wr,w2) |n+mi| = c(w, wp) V2 + m?. (3.2)
Hence there exists n(K) € N such that for every n, m € Z with n> + m> > n(K),

3.1

e [znml = Cx and
i |Zn,m| -Cg 2 |Zn,m|/2'
The second item implies that |z — z,,_n| = |zn,m|/2 for every z € K. Inserting these bounds
and (3.2) in (3.1) yields that for z € K and some large constant C,
Ly e+ 20zamllz]
(z- Zn,m)z Z%,m - |Zn,m|2(1/2|Zn,m|)2
2
3 4C% +8|zn,mlCk
|Zn,m|4
12Ck
" lznml?
C
L—=.
= (n2 +m2)32

1
Z 2 +myn =

n,meZ
n2+m?>n(K)

According to the hint*, we have

From the previous considerations,

) 1 1

sup - < 00,
nomeZ zeK (Z - Zn,m)2 Z%,m
n2+m?>n(K)

We conclude by local normal convergence that g satisfies all the desired properties.

“This can be shown via comparison to an integral.



