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Homework 3.1 (Construction in the proof of Mittag-Leffler’s theorem∗). Construct explicitly
(in the sense of an explicit series) a holomorphic function 𝑓 : C \ {

√
𝑛 : 𝑛 ∈ N} → C such

that for every 𝑛 ∈ N, the function 𝑓 has the principal part

𝑞𝑛 (𝑧) :=
√
𝑛

𝑧 −
√
𝑛

at 𝑧𝑛 :=
√
𝑛1.

Homework 3.2 (Partial fraction decomposition of 𝜋2/sin2 (𝜋𝑧)). The goal of this exercise
is to prove the formula

𝜋2

sin2 (𝜋𝑧)
=
∑︁
𝑛∈Z

1
(𝑧 − 𝑛)2 .

This will be achieved in several steps. Keep in mind the formula

sin(𝑧) = 1
2i

[
ei𝑧 − e−i𝑧 ] .

a. Show the assignment 𝑓 (𝑧) := 𝜋2/sin2 (𝜋𝑧) has its singularities exactly in Z and
determine the principle parts of the Laurent series expansion in those points.

b. Show the series

𝑔(𝑧) :=
∑︁
𝑛∈Z

1
(𝑧 − 𝑛)2

converges locally uniformly on C \ Z, so that it is meromorphic. Conclude the
difference 𝑔(𝑧) − 𝑓 (𝑧) can be extended to an entire function.

c. Show 𝑓 (𝑧) converges to zero as |ℑ𝑧 | → ∞ uniformly in ℜ𝑧.
d. Show the same statement for the function 𝑔. Then prove that the difference 𝑔 − 𝑓 is

bounded on C and conclude the proof2.

Solution. a. The function 𝑓 has singularities exactly in all zeros of the assignment sin(𝜋𝑧).
Note that sin(𝜋𝑧) = 0 for every 𝑧 ∈ Z.

We now argue that these are the only zeros. Write 𝑧 = 𝑥 + i 𝑦, where 𝑥, 𝑦 ∈ R. Then

sin(𝑧) = 1
2i
[
ei𝑥 e−𝑦 − e−i𝑥 e𝑦

]
,

so that sin(𝑧) = 0 implies e2i𝑥 = e2𝑦 . The left hand side has modulus one, which yields
𝑒2𝑦 = 1. By injectivity of the real-valued exponential function, we infer 𝑦 = 0. In turn, from
the previous identities of exponential functions, we obtain 𝑥 ∈ 𝜋Z.
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1Hint. Prove that a second order Taylor polynomial 𝑝𝑛 of 𝑞𝑛 yields the local normal convergence of the sum

𝑓 =
∑

𝑛∈N [𝑞𝑛 − 𝑝𝑛 ], cf. Theorem 2.2.
2Hint. Note that (𝑔 − 𝑓 ) (𝑧 + 1) = (𝑔 − 𝑓 ) (𝑧) for every 𝑧 ∈ C.
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In order to determine the principal part in a singularity 𝑧∗ ∈ Z we first treat the case
𝑧∗ = 0. Since the assignment sin(𝑧)/𝑧 has a removable singularity in 𝑧∗ = 0, it follows that
𝑓 has a pole of second order in 𝑧∗ = 0. Hence its Laurent series takes the form

𝑓 (𝑧) = 𝑎−2𝑧
−2 + 𝑎−1𝑧

−1 +
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛.

Since the corresponding integrals for the coefficients are quite difficult to evaluate, we use
this structure to determine the coefficients 𝑎−1 and 𝑎−2. Note that

𝑎−2 = lim
𝑧→0

𝑧2 𝑓 (𝑧) = lim
𝑧→0

(𝜋𝑧)2

sin2 (𝜋𝑧)
= 1.

Next, for the coefficient 𝑎−1 we use sin(𝑧)/𝑧 → 1 as 𝑧 → 0 to calculate

𝑎−1 =
d
d𝑧

����
0
𝑧2 𝑓 (𝑧)

= lim
𝑧→0

2𝜋2𝑧 sin2 (𝜋𝑧) − 2(𝜋𝑧)2 sin(𝜋𝑧) cos(𝜋𝑧)𝜋
sin4 (𝜋𝑧)

= lim
𝑧→0

2𝜋 − 2𝜋 cos(𝜋𝑧)
sin(𝜋𝑧)

= 0;

here, we have used cos(𝑧) = 1 − 𝑧2 + O(𝑧4) as 𝑧 → 0. Hence the principal part at 𝑧∗ = 0
reads 𝑞(𝑧) := 1/𝑧2.

To treat the other singularities we note that 𝑓 (𝑧 + 1) = 𝑓 (𝑧) for all 𝑧 ∈ C \ Z. Indeed,
write again 𝑧 = 𝑥 + i 𝑦, where 𝑥, 𝑦 ∈ R. Then

sin(𝜋𝑧 + 𝜋) = 1
2i
[
ei𝜋 (𝑥+1) e−𝑦 − e−i𝜋 (𝑥+1) e𝑦

]
= − sin(𝜋𝑧),

so that taking the inverse square yields the claim. By this periodicity property it follows
that the coefficients of the Laurent series are also periodic. Hence at a general 𝑧𝑛 ∈ Z the
principal part is given by 𝑞𝑛 (𝑧) := 1/(𝑧 − 𝑧𝑛)2.

b. Let 𝐾 ⊂ C \Z be compact. Then there exists a constant 𝑐(𝐾) with sup𝑧∈𝐾 |𝑧 | ≤ 𝑐(𝐾).
In particular, for every 𝑛 ∈ N with |𝑛| ≥ 2𝑐(𝐾) and every 𝑧 ∈ 𝐾, the triangle inequality
implies |𝑧 − 𝑛| ≥ |𝑛| − 𝑐(𝐾) ≥ |𝑛|/2, which gives∑︁

|𝑛 | ≥2𝑐 (𝐾 )
sup
𝑧∈𝐾

��� 1
(𝑧 − 𝑛)2

��� ≤ ∑︁
|𝑛 | ≥2𝑐 (𝐾 )

4
𝑛2 < ∞.

Hence the series 𝑔 converges locally normally on C \ Z. By Lemma 1.11 it follows that 𝑔 is
holomorphic on C \ Z. Since all singularities are isolated and poles of second order, we
deduce that 𝑔 is meromorphic on C. As its principal parts agree with the ones of 𝑓 in all
singularities, it follows from Remark 2.3 that the difference 𝑔 − 𝑓 can be extended to an
entire function.

c. We show the function |sin(𝑥 + i𝑦) | blows up when |𝑦 | → +∞ uniformly in 𝑥 ∈ R.
Indeed, by the triangle inequality we have

|sin(𝑥 + i𝑦) | =
��� 1
2i
[
ei𝑥 e−𝑦 − e−i𝑥 e𝑦

] ��� ≥ 1
2
[
e |𝑦 | − e−|𝑦 |

]
.

The right hand side goes to ∞ as |𝑦 | → ∞ uniformly in 𝑥 ∈ R. This proves the claim.
d. Fix 𝑛 ∈ Z and write 𝑧 = 𝑥 + i𝑦, where 𝑥, 𝑦 ∈ R. By the periodicity 𝑔(𝑧 + 1) = 𝑔(𝑧)

for all 𝑧 ∈ C \ Z (which follows by an index shift) it suffices to take 𝑥 ∈ [0, 1]. Using the
equivalence of the ℓ1-norm and the usual euclidean (viz. ℓ2-)norm on R2 we deduce there
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exists a constant 𝑐 > 0 such that

|𝑧 − 𝑛| ≥ 1
𝑐
( |𝑦 | + |𝑥 − 𝑛|) ≥


1
𝑐

[
|𝑦 | + |𝑛| − 1

]
if 𝑛 ≥ 1,

1
𝑐

[
|𝑦 | + |𝑛|

]
if 𝑛 ≤ 0.

Hence, performing further index shifts, we infer that���∑︁
𝑛∈Z

1
(𝑧 − 𝑛)2

��� ≤ 𝑐2
∑︁
𝑛≥1

1
( |𝑦 | + |𝑛| − 1)2 + 𝑐2

∑︁
𝑛≤0

1
( |𝑦 | + |𝑛|)2

≤ 2𝑐2
∑︁
𝑛≥0

1
( |𝑦 | + |𝑛|)2

≤ 2𝑐2
∑︁

𝑛≥ |𝑦 |−1

1
𝑛2 .

Clearly the last term vanishes as |𝑦 | → +∞.
It remains to show the difference 𝑔 − 𝑓 is bounded on C. We already know that it is

holomorphic and periodic in the sense that (𝑔 − 𝑓 ) (𝑧 + 1) = (𝑔 − 𝑓 ) (𝑧) for every 𝑧 ∈ C.
Hence on each strip of the form R × [−𝑎, 𝑎], where 𝑎 > 0, it is bounded. From c. and
the previous discussion we further know that there exists some 𝑎∗ > 0 such that for all
𝑧 = 𝑥 + i𝑦 with 𝑥 ∈ R and 𝑦 ∈ R with |𝑦 | > 𝑎∗ it holds that | (𝑔 − 𝑓 ) (𝑧) | ≤ 1. Hence 𝑔 − 𝑓

is a bounded, entire function. By Liouville’s theorem it is therefore constant and again by c.
and the previous discussion it follows 𝑓 = 𝑔.

Homework 3.3 (Weierstraß elliptic function). Let 𝜔1, 𝜔2 ∈ C be R-linearly independent.
Show that up to an additive constant there exists one and only one holomorphic function3

℘ : C \ {𝑚𝜔1 + 𝑛𝜔2 : 𝑚, 𝑛 ∈ Z} → C such that
a. ℘ has principal part 𝑞1 (𝑧) := 1/𝑧2 in 𝑑1 := 0 and
b. ℘ is {𝜔1, 𝜔2}-periodic, i.e. for every 𝑧 ∈ C \ {𝑚𝜔1 + 𝑛𝜔2 : 𝑚, 𝑛 ∈ Z},

℘(𝑧 + 𝜔1) = ℘(𝑧),
℘(𝑧 + 𝜔2) = ℘(𝑧).

You can use without proof that ∑︁
𝑛,𝑚∈Z

|𝑛 |+|𝑚 |≠0

1
(𝑛2 + 𝑚2)3/2 < ∞.

Solution. We first show the uniqueness statement. Suppose that there are two functions
℘1 and ℘2 with the stated properties. Then the difference 𝑔 := ℘1 − ℘2 has a removable
singularity in 0 and by periodicity also in each point 𝑧𝑛,𝑚 = 𝑚𝜔1 + 𝑛𝜔2, where 𝑛, 𝑚 ∈ Z.
We conclude that 𝑔 can be extended to an entire function. Since the set {𝜔1, 𝜔2} forms a
basis of C with respect to field R, the local boundedness of (the extended version of) 𝑔 and
the periodcity imply that 𝑔 is bounded on C. Hence 𝑔 is constant by Liouville’s theorem.
This shows the uniqueness claim.

Next we construct the function ℘. The basic idea is to use the structure given by the
Mittag-Leffler theorem, that means we consider the countable set 𝑆 := {𝑧𝑛,𝑚 = 𝑚𝜔1 + 𝑛𝜔2 :
𝑚, 𝑛 ∈ Z} and the corresponding principal parts 𝑞𝑛,𝑚 (𝑧) := 1/(𝑧 − 𝑧𝑛,𝑚)2. The difficult part
is how to choose the polynomials in order to ensure periodicity. Non-constant polynomials
are never periodic. Hence we try to construct constant ones. The zeroth-order expansion of

3If we require that the zeroth order coefficient of the Laurent series in the origin vanishes, this function is called
the Weierstraß ℘-function.
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𝑞𝑛,𝑚 in zero is given by 𝑞𝑛,𝑚 (0) = 1/𝑧2𝑛,𝑚 whenever 𝑛2 + 𝑚2 ≠ 0. Thus our ansatz is

℘(𝑧) = 1
𝑧2

+
∑︁

𝑛,𝑚∈Z,
𝑛2+𝑚2≠0

[ 1
(𝑧 − 𝑧𝑛,𝑚)2 − 1

𝑧2𝑛,𝑚

]
.

We show this series converges locally normally on C \ {𝑧𝑛,𝑚 : 𝑚, 𝑛 ∈ Z}. Then it
satisfies all claimed properties — the periodicity from b. following by an index shift. Let
𝐾 ⊂ C \ {𝑧𝑛,𝑚 : 𝑚, 𝑛 ∈ Z} be compact. For all 𝑧 ∈ 𝐾 , algebraic manipulations give��� 1

(𝑧 − 𝑧𝑛,𝑚)2 − 1
𝑧2𝑛,𝑚

��� ≤ |𝑧2 − 2𝑧𝑛,𝑚𝑧 |
|𝑧𝑛,𝑚 |2 |𝑧 − 𝑧𝑛,𝑚 |2

. (3.1)

Since 𝐾 is bounded, the quantity 𝐶𝐾 := sup𝑧∈𝐾 |𝑧 | is finite. Next note that the R-linear
mapping Ω defined through Ω(1) := 𝜔1 and Ω(i) := 𝜔2 can be interpreted as an invertible,
R-linear map from C to C. Thus there exists a constant 𝑐(𝜔1, 𝜔2) such that

|𝑧𝑛,𝑚 | = |Ω(𝑛 + 𝑚𝑖) | ≥ 𝑐(𝜔1, 𝜔2) |𝑛 + 𝑚𝑖 | = 𝑐(𝜔1, 𝜔2)
√︁
𝑛2 + 𝑚2. (3.2)

Hence there exists 𝑛(𝐾) ∈ N such that for every 𝑛, 𝑚 ∈ Z with 𝑛2 + 𝑚2 ≥ 𝑛(𝐾),
• |𝑧𝑛,𝑚 | ≥ 𝐶𝐾 and
• |𝑧𝑛,𝑚 | − 𝐶𝐾 ≥ |𝑧𝑛,𝑚 |/2.

The second item implies that |𝑧 − 𝑧𝑛,𝑚 | ≥ |𝑧𝑛,𝑚 |/2 for every 𝑧 ∈ 𝐾 . Inserting these bounds
and (3.2) in (3.1) yields that for 𝑧 ∈ 𝐾 and some large constant 𝐶,��� 1

(𝑧 − 𝑧𝑛,𝑚)2 − 1
𝑧2𝑛,𝑚

��� ≤ |𝑧 |2 + 2|𝑧𝑛,𝑚 | |𝑧 |
|𝑧𝑛,𝑚 |2 (1/2|𝑧𝑛,𝑚 |)2

≤
4𝐶2

𝐾
+ 8|𝑧𝑛,𝑚 |𝐶𝐾
|𝑧𝑛,𝑚 |4

≤ 12𝐶𝐾
|𝑧𝑛,𝑚 |3

≤ 𝐶

(𝑛2 + 𝑚2)3/2 .

According to the hint4, we have ∑︁
𝑛,𝑚∈Z

𝑛2+𝑚2≥𝑛(𝐾 )

1
(𝑛2 + 𝑚2)3/2 < ∞.

From the previous considerations,∑︁
𝑛,𝑚∈Z

𝑛2+𝑚2≥𝑛(𝐾 )

sup
𝑧∈𝐾

��� 1
(𝑧 − 𝑧𝑛,𝑚)2 − 1

𝑧2𝑛,𝑚

��� < ∞.

We conclude by local normal convergence that ℘ satisfies all the desired properties.

4This can be shown via comparison to an integral.


